

The SC3/SC4 Series are solid-state 3 or 4 channel, chasers designed for sequential three or four circuit flashing of incandescent lamp loads. Unlike electromechanical chasers, there are no contacts to arc, wear, and eventually fail. Fixed or adjustable rates of 30 to 300 operations per minute.

Operation
Sequential 3 or 4 circuit flashing of incandescent loads with equal time delays for each load. Upon application of input voltage, Load 1 is energized. At the end of the time delay, Load 1 de-energizes and Load 2 energizes. At the end of the time delay, Load 2 de-energizes and Load 3 energizes. This cycle continues until input voltage is removed.
Reset: Removing input voltage resets the unit and cycle.
For more information see:
Appendix A, page 164 for Flasher (Chasing) function. Appendix B, page 166, Figure 14 for dimensional drawing. Appendix C, page 168, Figure 9 for connection diagram.

Features:

- Sequential 3 or 4 circuit flashing of incandescent loads
- Fixed or adjustable at $30-300$ FPM
- 1A steady state output
- 24,120 , or 230 VAC input voltage
- Totally solid state - encapsulated

Auxiliary Products:

- Quick connect to screw adaptor: P/N: P1015-18
- Female quick connect: P/N: P1015-13 (AWG 10/12)
P/N: P1015-64 (AWG 14/16)
P/N: P1015-14 (AWG 18/22)

Available Models:
 SC3120F30

If desired part number is not listed, please call us to see if it is technically possible to build.

Order Table:

SC3 (3 outputs)	X	X
SC4 (4 outputs)	Input Voltage	Rate
	-24-24VAC	-A - Adjustable (30-300)
	-120-120VAC	-F - Fixed*
	-230-230VAC	
		*If Fixed is selected, insert ($30-300$) operations per minute.

Specifications

Technical Data	
Operation	Sequential 3 or 4 circuit flashing of incandescent
	lamp loads. Fixed or adjustable rates.
Rate	Adjustable: 30-300 operations per minute
	Fixed: 30-300 operations per minute ($\pm 10 \%$)
Input	
Voltage.	24,120 , or $230 \mathrm{VAC} \pm 15 \%$
AC Line Frequency	$50 / 60 \mathrm{~Hz}$
Output	
Type.	Solid state
Rating	1A steady state per output
Mechanical	
Mounting	Surface mount with two \#6 (M3.5 x 0.6) screws
Termination	0.25 in . (6.35 mm) male quick connect terminals
Dimensions	$3.5 \times 2.5 \times 1.22 \mathrm{in}$. $(88.9 \times 63.5 \times 31 \mathrm{~mm})$

Protection
Circuitry . Encapsulated
Dielectric Breakdown ≥ 2000 V RMS terminals to mounting surface
Insulation Resistance. $\geq 100 \mathrm{M} \Omega$
Environmental
Operating / Storage Temperature $\ldots . .$. . -20° to $60^{\circ} \mathrm{C} /-40^{\circ}$ to $85^{\circ} \mathrm{C}$
Humidity. 95\% relative, non-condensing
Weight.................................... $\cong 5.4$ oz (153 g)

Appendix A - Timer/Flasher Functions

Single Functions
 Retriggerable
 Single Shot

Accumulative Delay-on-Make

$\mathrm{V}=$ Voltage, $\mathrm{R}=$ Reset, $\mathrm{S} 1=$ Initiate Switch, NO=Normally Open Contact, $\mathrm{NC}=$ Normally Closed Contact, TD,TD1,TD2=Complete Time Delay, $\mathrm{t}=$ Partial Time Delay, DOM=Delay-on-Make, DOB=Delay-on-Break, REC=Recycle, SS=Single Shot, INT=Interval, M=Minutes, S=Seconds,
\Longrightarrow —— Undefined time
5 Switches for Function Selection
3 Switches for Time Delay Range
NOTE: The time delay range is the same for both functions when dual functions are selected

Dual Functions

* Recycle (OFF Time First) Both Times Adjustable

* Interval
Delay-on-Make

Accumulative Delay-on-Make Interval

* 9 Functions included in the 8 pin DPDT models

Flasher Function Diagrams

Flasher (NC)

Flasher (Alternating)

Flashers \& Aux. Modules

Flasher (OFF First)

Flasher (ON First-DPDT)

Flasher (ON First)

ON time plus OFF time equals one complete flash.

Flasher (Chasing)

SC4 shown; SC3, L4 is eliminated and L1 TD begins as soon as L3 TD is completed.
$V=$ Voltage $R=$ Reset $L(1 . . .4)=$ Lamps TD = Time Delay (all are equal)

Appendix B - Dimensional Drawings

FIGURE 13

AF

FIGURE 14

FIGURE 15

FIGURE 17

FB9L; HLMU; SCR9L

FIGURE 20

$\begin{array}{ll}\text { ECS; ECSW } & \text { (ECS has spade connectors and } \\ & \text { ECSW has terminal board) }\end{array}$
$\begin{array}{ll}\text { ECS; ECSW } & \text { (ECS has spade connectors an } \\ & \text { ECSW has terminal board) }\end{array}$

FIGURE 21

TCS; TCSA

FIGURE 19

LLC4; LLC6; PLS

FIGURE 22

FIGURE 23

LCS

Appendix C - Connection Diagrams

FIGURE 1 - FSU1000 Series

S1 = Optional low current switch V = Voltage L= Load

FIGURE 2 - FS100 Series

FIGURE 3 - FS100 Series

FIGURE 4 - FS200 Series

FIGURE 8 - FS500 Series

FIGURE 11 - DLMU Series

FIGURE 12 - HLMU Series

L1, L2, L3 = Line Voltage Input NO = Normally Open Contact NC = Normally Closed Contact C = Common, Transfer Contact CAUTION: 2 amp max. fast acting fuses are recommended to protect the equipment's wiring. They are not required to protect the HLMU.

FIGURE 6 - FS400 Series

FIGURE 10 - WVM Series

FIGURE 13 -

FIGURE 14 -
TVM/TVW Series

[^0]L2 $=$ Phase B
L3 = Phase C
NO = Normally Open
NC = Normally Closed
C = Common, Transfer Contact
Relay contacts are isolated.
$\mathrm{F}=2 \mathrm{~A}$ Fast acting fuses are recommended, but not required

[^0]: L1 = Phase A

